Môi trường không có khí Vận_tốc_âm_thanh

Vận tốc âm thanh trong chất rắn

Chất rắn ba chiều

Trong một chất rắn, có một độ cứng khác không đối với cả biến dạng thể tích và biến dạng cắt. Do đó, có thể tạo là sóng âm với các vận tốc khác nhau phụ thuộc vào kiểu biến dạng. Sóng âm tạo ra biến dạng thể tích (sự nén) và biến dạng cắt (sự cắt) được gọi là sóng áp suất (sóng ngang) và sóng cắt (sóng dọc), lần lượt. Trong động đất, các sóng địa chất tương ứng được gọi là sóng P (sóng sơ cấp) và sóng S (sóng thứ cấp), lần lượt. Vận tốc âm thanh của hai loại sóng này truyền trong một vật rắn ba chiều đồng nhất lần lượt là[6]

cchất rắn,p = K + 4 3 G ρ = E ( 1 − ν ) ρ ( 1 + ν ) ( 1 − 2 ν ) , {\displaystyle ={\sqrt {\frac {K+{\frac {4}{3}}G}{\rho }}}={\sqrt {\frac {E(1-\nu )}{\rho (1+\nu )(1-2\nu )}}},}

cchất rắn,s = G ρ , {\displaystyle ={\sqrt {\frac {G}{\rho }}},}

với

Đại lượng cuối cùng không phải một đại lượng độc lập, vì E = 3K(1 − 2ν). Chú ý rằng vận tốc của sóng áp suất phụ thuộc vào cả tính chất kháng áp suất và cắt của vật liệu, trong khi vận tốc sóng cắt chỉ phụ thuộc vào tính chất cắt.

Điển hình, sóng áp suất di chuyển nhanh hơn trong các vật liệu so với sóng cắt, và trong động đất đây là lý sự bắt đầu của một trận động đất thường được theo trước bởi một chấn động nhanh lên xuống, trước khi sóng mà tạo ra chuyển động từ bên này qua bên kia đi tới. Ví dụ, một hợp kim thép điển hình, K = 170 GPa, G = 80 GPa và ρ = 7,700 kg/m3, đưa ra vận tốc nén cchất rắn,p là 6,000 m/s.[6] Điều này tương đối thỏa mãn với cchất rắn,p đo một cách thực nghiệm ở 5.930 m/s đối với một loại (có thể khác) thép.[7] Vận tốc cắt cchất rắn,s được ước lượng ở 3.200 m/s bằng cách sử dụng các số liệu tương tự.

Chất rắn một chiều

Vận tốc âm thanh đối với sóng áp suất trong chất liệu cứng như là kim loại đôi khi được tính với một "dây dài" vật liệu cho trước, trong đó vận tốc dễ đo hơn. Trong dây mà có đường kính ngắn hơn một bước sóng, vận tốc sóng áp suất tinh khiết có thể giản ước và tính bởi:

cchất rắn = E ρ , {\displaystyle ={\sqrt {\frac {E}{\rho }}},}

với E là mô đun Young. Nó tương tự với công thức của sóng cắt, nhớ rằng mô đun Young thay thế mô đun cắt. Vận tốc âm thanh này với sóng áp suất trong dây dày sẽ luôn ít hơn một chút so với vận tốc tương tự trong chất rắn ba chiều đồng nhất, và tỷ lệ vận tốc trong hai loại vật khác nhau phụ thuộc vào tỷ lệ Poisson của vật liệu.

Vận tốc âm thanh trong chất lỏng

Vận tốc âm thanh trong nước vs nhiệt độ.

Trong chất lỏng độ cứng khác không duy nhất là biến dạng thể tích (chất lỏng không duy trì lực cắt).

Do đó vận tốc âm thanh trong chất lỏng là

cchất lỏng = K ρ , {\displaystyle ={\sqrt {\frac {K}{\rho }}},}

với K là mô đun khối của chất lỏng.

Nước

Trong nước trong, âm thanh di chuyển khoảng 1481 m/s tại 20 °C (xem Liên kết ngoài).[8] Ứng dụng của âm thanh dưới nước có thể được thấy ở sonar, liên lạc âm thanhhải dương học âm thanh.

Nước biển

Vận tốc âm thanh là một hàm của độ sâu tại một vị trí ở bắc Hawaii trong Thái Bình Dương suy ra từ Atlas Đại dương Thế giới 2005.

Trong nước mối không có bọt khí hoặc trầm tích lơ lửng, âm thanh di chuyển khoảng 1500 m/s (1500.235 m/s tại 1000 kilopascal, 10 °C và độ mặn 3% bởi một phương pháp).[9] Vận tốc âm thanh trong nước biển phụ thuộc vào áp suất (do đó là độ sâu), nhiệt độ (thay đổi 1 °C ~ 4 m/s), và độ mặn (thay đổi 1 ~ 1 m/s), và phương trình thực nghiện được chứng minh để tính toán chính xác vận tốc âm thanh từ các biến này.[10][11] Các hệ số khác tác động đến vận tốc của âm thanh không đáng kể. Vì nhiệt độ giảm với độ sâu trong khi áp suất và độ mặn tăng, đồ thị vận tốc với độ sâu thường cho thấy một đường cong đặc trưng mà giảm tới cực tiểu ở độ sâu vài tăm mét, sau đó tăng lại với độ sâu tăng lên (bên phải).[12] Để biết thêm thông tin xem Dushaw et al.[13]

Một phương trình thực nghiệm đơn giản cho vận tốc âm thanh trong nước biển với độ chính xác tương đối cho các đại dương trên thế giới do Mackenzie:[14]

c ( T , S , z ) = a 1 + a 2 T + a 3 T 2 + a 4 T 3 + a 5 ( S − 35 ) + a 6 z + a 7 z 2 + a 8 T ( S − 35 ) + a 9 T z 3 , {\displaystyle c(T,S,z)=a_{1}+a_{2}T+a_{3}T^{2}+a_{4}T^{3}+a_{5}(S-35)+a_{6}z+a_{7}z^{2}+a_{8}T(S-35)+a_{9}Tz^{3},}

trong đó

  • T là nhiệt độ tính theo độ C;
  • S là độ mặn tính theo phần nghìn;
  • z là độ sâu tính theo mét.

Hằng số a1, a2, …, a9 là

a 1 = 1.448 , 96 , a 2 = 4 , 591 , a 3 = − 5 , 304 × 10 − 2 , a 4 = 2 , 374 × 10 − 4 , a 5 = 1 , 340 , a 6 = 1 , 630 × 10 − 2 , a 7 = 1 , 675 × 10 − 7 , a 8 = − 1 , 025 × 10 − 2 , a 9 = − 7 , 139 × 10 − 13 , {\displaystyle {\begin{aligned}a_{1}&=1.448,96,&a_{2}&=4,591,&a_{3}&=-5,304\times 10^{-2},\\a_{4}&=2,374\times 10^{-4},&a_{5}&=1,340,&a_{6}&=1,630\times 10^{-2},\\a_{7}&=1,675\times 10^{-7},&a_{8}&=-1,025\times 10^{-2},&a_{9}&=-7,139\times 10^{-13},\end{aligned}}}

với giá trị kiểm tra 1550,744 m/s đối với T = 25 °C, S = 35 phần nghìn, z = 1.000 m. Phương trình này có sai số tiêu chuẩn 0,070 m/s đối với độ mặn giữa 25 và 40 phần nghìn. Xem Technical Guides. Speed of Sound in Sea-Water đối với tính toán trực tuyến.

Các phương trình khác cho vận tốc âm thanh trong nước biển chính xác trong một loạt các điều kiện khác nhau, nhưng phức tạp hợp nhiều, ví dụ phương trình bởi V. A. Del Grosso[15] và phương trình Chen-Millero-Li.[13][16]

Vận tốc âm thanh trong plasma

Vận tốc âm thanh trong plasma đối với trường hợp phổ biến mà electron nóng hơn ion (nhưng không nóng hơn quá nhiều) được tính bởi công thức (xem ở đây)

c s = ( γ Z k T e / m i ) 1 / 2 = 9.79 × 10 3 ( γ Z T e / μ ) 1 / 2   m / s , {\displaystyle c_{s}=(\gamma ZkT_{\mathrm {e} }/m_{\mathrm {i} })^{1/2}=9.79\times 10^{3}(\gamma ZT_{e}/\mu )^{1/2}~\mathrm {m/s} ,}

với

Ngược lại với khí, áp suất và khối lượng riêng được cung cấp bởi các thành phần riêng biệt, áp suất bởi electron và khối lượng riêng bởi ion. Hai tính chất được kết hợp qua điện trường thay đổi.

Tài liệu tham khảo

WikiPedia: Vận_tốc_âm_thanh http://www.engineeringtoolbox.com/sound-speed-wate... http://mathpages.com/home/kmath109/kmath109.htm http://www.mathpages.com/home/kmath109/kmath109.ht... http://space.newscientist.com/article/mg19826504.2... http://www.pdas.com/atmos.html http://www.sengpielaudio.com/SpeedOfSoundPressure.... http://www.sengpielaudio.com/calculator-speedsound... http://www.thermaxxjackets.com/newton-laplace-equa... http://adsabs.harvard.edu/abs/1974ASAJ...56.1084D http://adsabs.harvard.edu/abs/1981ASAJ...70..801M